PN-III-P4-ID-PCE-2016-0032 (FARDYM) ( closed)

Project coordinator: Moca Pașcu Cătălin

Period: 11th Iuly 2017 — 31st December 2019

The project PN-III-P4-ID-PCE-2016-0032 entitled “Non-equilibrium dynamics in strongly correlated systems” is a research project funded by the Romanian National Authority for Scientific Research, UEFISCDI. The total budget of the project is 850 000 lei (188 888 €).

Description of the project

The rapid development of laboratory techniques (in the field of trapped ultracold atoms and quantum dots) has opened the doors to experimental studies on how (open or closed) quantum systems thermalize. By means of optical lattices and Feschbach resonances, a wide range of Hamiltonians can be realized in practice to perform quantum simulations under non-equilibrium conditions. Being related to basic principles of statistical mechanics, the issues of thermalization and relaxation are of fundamental interest. Here we propose to investigate the non-equilibrium dynamics of a broad range of systems, discrete and continuous lattice models, as well as quantum impurity models, following a quantum quench. We would like to address important questions such as: Under what conditions do systems thermalize? How is the thermal state approached? 
These questions are not only of fundamental interest, but addressing the non-equilibrium time evolution of closed or almost closed interacting quantum systems is of primary importance for applications such as quantum cryptography, quantum simulations or quantum computations. Our main motivation comes from the observation that capturing the steady state correctly is hard, since the time scale covered by the present analytical and numerical methods is much smaller than the timescale for the relaxation processes. We are planning to study quantum quenches in models such as the sine-Gordon or the Luttinger liquid, and the real-time dynamics in quantum impurity systems. To reach these specific scientific goals, we are planning to develop new methods capable to investigate the long-time limit of prethermalized states, and to capture the evolution of entanglement following the quench. Here we have in mind the construction of an extended semiclassical approach, the development of a new TEBD code and an extension of our Flexible-DMNRG code to time dependent processes. 

The main objectives of the project

The main objectives of our research are a) to construct theoretical tools that are able to capture the non-equilibrum dynamics following a global quench in closed and open quantum systems; b) to investigate within this general framwork precisely how the thermal state is approached and what the role of various conserved quantities is. Our research shall be centered on the following two main directions: A) Global quenches in closed interacting models and B) Quantum quenches in quantum impurity systems.

Group members

Prof. Cătălin Pașcu Moca

Prof. Gergely Zarand

Prof. Dora Balazs

Student: Raluca Maghiar

Student: Claudia Costin

Student: Diana Borodi

Raport științific final (PDF)

Results

1. B. Dora, M. A. Werner, C. P. Moca, Information scrambling at an impurity quantum critical pointPhys. Rev. B 96, 155116 (2017) (IF=3.8).

2. C. P. Moca, M. Kormos, G. Zarand, Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional SystemsPhys. Rev. Lett 119, 100603 (2017) (IF=8.4).

3. C. P. Moca, C. Mora, I. Weymann, G. Zarand, Noise of a chargeless Fermi liquidPhys. Rev. Lett. 120, 016803 (2018)(IF=8.4).

4. I. Weymann, R. Chirla, P. Trocha, C. P. Moca, The SU(4) Kondo effect in double quantum dots with ferromagnetic leadsPhys. Rev. B 97, 085404 (2018) (IF=3.8).

5. M. Kanasz-Nagy, Y. Ashida, T. Shi, C. P. Moca, T. N. Ikeda, S. Folling, J. I. Cirac, G. Zarand, E. A. Demler, Exploring the Kondo model in and out of equilibrium with alkaline-earth atomsPhys. Rev. B 97, 155156 (2018) (IF=3.8).

6. M. Kormos, C. P. Moca, G. Zarand, Semiclassical theory of front propagation and front equilibration following an inhomogeneous quantum quenchPhys. Rev. E 98, 032105 (2018) (IF=2.3).
7. B. Dora, B. Hetenyi, C. P. Moca, Statistics and dynamics of the center of mass coordinate in a quantum liquidPhys. Rev. Lett. 121, 056803 (2018) (IF=8.4).

8. M. Heyl, F. Pollmann, B. Dora, Detecting Equilibrium and Dynamical Quantum Phase Transitions in Ising Chains via Out-of-Time-Ordered CorrelatorsPhys. Rev. Lett. 121, 016801 (2018) (IF=8.4).

9. L. Oroszlany, B. Dora, J. Cserti, A. Cortijo, Topological and trivial magnetic oscillations in nodal loop semimetalsPhys. Rev. B 97, 205107 (2018) (IF=3.8).

10. B. Dora, R. Moessner, Gauge field entanglement in Kitaev’s honeycomb modelPhys. Rev. B 97, 035109 (2018)(IF=3.8).

11. I. Shapir, A. Hamo, S. Pecker, C. P. Moca, O. Legeza, G. Zarand, S. Ilani, Imaging the Wigner Crystal of Electrons in One DimensionScience 364, 870-875 (2019) (IF=41).

12. Z. Okvatovity, H. Yasuoka, M. Baenitz, F. Simon, B. Dora, Nuclear spin-lattice relaxation time in TaP and the Knight shift of Weyl semimetalsPhys. Rev. B 99, 115107 (2019) (IF=3.8).

13. B. Hetenyi, B. Dora, Quantum phase transitions from analysis of the polarization amplitudePhys. Rev. B 99, 085126 (2019) (IF=3.8).

14. M. A. Werner, C. P. Moca, Spin fluctuations after quantum quenches in the S=1 Haldane chain: Numerical validation of the semi-semiclassical theoryPhys. Rev. B 100, 035401 (2019) (IF=3.8).

15. C. P. Moca, R. Chirla, B. Dora, G. Zarand, Quantum criticality in the attractive SU(N>2) Anderson modelPhys. Rev. Lett. 123, 136803 (2019) (IF=9.2).

16. B. Dora, M. Heyl, R. Moessner, The Kibble-Zurek mechanism at exceptional pointsNat. Commun. 10, 2254 (2019)(IF=11.8).

17. B. Gulacsi, B. Dora, Collective modes for helical edge state interacting with quantum lightPhys. Rev. B 99, 245137 (2019) (IF=3.8).

18. A. Bacsi, M. Haque, B. Dora, Optimal protocols for finite-duration quantum quenches in the Luttinger modelPhys. Rev. B 99, 245110 (2019) (IF=3.8).

19. Z. Scherubl, G. Fulop, C. P. Moca, J. Gramich, A. Baumgartner, P. Makk, T. Elalaily, C. Schonenberger, J. Nygard, G. Zarand, S. Csonka, Large spatial extension of the zero-energy Yu-Shiba-Rusinov state in magnetic field, Nature Communications, 11 1834 (2019) (IF 12.3).

20. B. Dora, C. P. Moca, Quantum quench in PT-symmetric Luttinger liquid, Phys. Rev. Lett. 124, 136802 (2020) (IF 8.4).

21. C. P. Moca, W. Izumida, B. Dora, O. Legeza, G. Zarand, Topologically protected, correlated end spin formation in carbon nanotubes, Phys. Rev. Lett. 125, 056401 (2020) (IF 8.4).

21. Z. Okvatovity, B. Dora, Out-of-time-ordered commutators in Dirac–Weyl systems, Phys. Rev. B 101, 245125 (2020) (IF 3.8).

Proceedings

1. C. P. Moca, A. Roman, M. Toderaș, R. Chirla, Triple dot system coupled to topological insulators: A Numerical Renormalization Group analysis of the SU(3) attractive Anderson modelAIP Conference Proceedings 1916, 030003 (2017).

2. R. Chirla, I. Weymann, P. Trocha, C. P. Moca, The SU (4) Kondo effect in double quantum dots coupled to ferromagnetic leads: A scaling analysisAIP Conference Proccedings 2071, 030002 (2019).